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a b s t r a c t

Monolayer MoTe2, one of the 2D transition metal dichalcogenide (TMD) materials, exhibits two stable
structural phases: semiconducting 2H phase and metallic 1T′ phase. The dynamic control of the
transition between these two phases on a single atomically thin sheet holds promise for a variety of
revolutionary device applications. Particularity, stress could be utilized to dynamically modulate such
phase transition. To date, the atomistic and kinetic mechanism of the phase transition under stress
is not clear. In this paper, the finite deformation nudged elastic band method and density functional
theory are applied to determine the phase transition barriers and pathways of monolayer MoTe2 as
a function of applied stress. It is found that the stress can greatly influence the thermodynamics and
kinetics of the phase nucleation and propagation. The results shed light on the phase engineering of
2D TMD materials with stress at the atomic level.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Monolayer group-VI transition metal dichalcogenide (TMD)
aterials have multiple crystal phases with different physical
roperties. The generalized formula of these TMD materials is
X2, where M represents a transition metal (Mo or W) in group-
I and X represents a chalcogen (S, Se or Te). These 2D materials
ave recently shown great promise for phase engineering applica-
ions at the atomically thin limits, which can lead to revolutionary
evices such as memory devices [1], reconfigurable circuits [2]
nd topological transistors [3]. Monolayer MoTe2 is one of the

members inside this 2D material family. One of the stable phases
of monolayer MoTe2 is 2H, as shown in Fig. 1, the monolayer
is composed of a layer of hexagonally arranged transition-metal
atoms (blue color), sandwiched between two layers of chalcogen
atoms (orange and yellow colors). Monolayers of MoTe2 in 2H
hase are semiconductors with a direct band gap. A hexagonal
T phase is generated by shifting one of the Te layers around Mo
toms. This 1T structure is energetically unstable, so it turns into
onducting 1T′ phase with monoclinic symmetry. Inside the 2D
MD family, MoTe2 has the least energy difference between 2H
nd 1T′ at the ground state [4], thus it exhibits great potential for
hase engineering applications [5,6].
One of the fascinating properties of 2D materials is their

igh stretchability and possibility to use external deformation
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to manipulate their physical properties in a controlled man-
ner [7–9]. A recent experiment showed that nanoindentation
applied by Atomic Force Microscope can induce phase transi-
tion on MoTe2 thin films at ambient condition [5]. In addition,
the phase transition of monolayer MoS2 and MoTe2 has been
experimentally reported through chemical/thermal doping [10,
11], laser patterning [12] and electrostatic gating [6]. In these
phase engineering processes, stress could play an important role,
for example, by thermal stress, and the stress induced by lat-
tice mismatches and interactions with substrates. Meanwhile,
combining the stress modulation with other phase engineering
approaches could potentially lead to more versatile phase con-
trols. With current nanomechanical techniques, stress can be
applied to 2D materials through micromechanical device [13],
nanoindentation [5,14,15], blister pressure [16–19], interfacial
load transfer [20,21], thermal expansion [22] and so on.

On the theoretical sides, Reed and co-workers [4] calculated
the energies of various 2D TMDs at different phases under strains
and conducted a thermodynamics analysis, from which they sug-
gested the promising application of mechanical deformation to
the phase engineering of these materials. Following their work,
the simulations with nudged elastic band (NEB) method demon-
strated the kinetics of the phase transition under the applied
strains [23–25]. However, there are two limitations of previous
studies. First, due to the limitation of conventional NEB method,
all these calculations were conducted at fixed geometry, where
the lattice is unable to deform during the calculations of tran-
sition pathway. While in reality, lattices are allowed to change

geometries during phase transition. Recently, we developed a

https://doi.org/10.1016/j.eml.2020.100946
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2020.100946&domain=pdf
mailto:wei.gao@utsa.edu
https://doi.org/10.1016/j.eml.2020.100946


2 A. Ghasemi and W. Gao / Extreme Mechanics Letters 40 (2020) 100946

(

p
o

3

b
i
f
s
s
u
u
s

Fig. 1. Cross-sectional and basal plane views of 2D MoTe2 crystal structure at
different phases. Blue color: Mo; orange/yellow color: Te atoms on the top and
bottom layers. The dashed lines represent the unit cells of the crystals. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Schematic demonstration of the stress dependent minimum energy path
MEP) for phase transition between 2H and 1T′ phases of MoTe2 .

finite deformation nudged elastic band (FD-NEB) method [26],
which uses applied stress as the control variable instead of strain,
so finite lattice deformations can be considered during the search
of transition pathways. Second, previous phase transition calcu-
lations [23–25,27] only studied the concerted transition, where
all the atoms transform to the new phase simultaneously. While
in reality, phase transition could nucleate from a localized site,
followed by the propagation of the new phase. These phase
nucleation and propagation processes are studied in this paper
with FD-NEB method. In addition to the studies at the atomic
scale, the phase transition of TMD materials has been studied
with phase field method at the mesoscale [28].

The mechanism of the phase transition of MoTe2 can be
schematically described by Fig. 2, where the horizontal and ver-
tical coordinates respectively represent the structure evolution
and the energy variations during phase transition process. Under
an external stress, the energy landscape can be generalized to a
static enthalpy landscape in order to include the work done by
the applied stress. The double-well curve represents the most
probable phase transition pathway, i.e. minimum energy path
(MEP). To have a phase transition from 2H to 1T′, the material
needs to across a transition state at the peak of MEP, overcoming
a barrier Π ̸=. According to transition state theory [29,30], this
barrier determines phase transition rate, described by k(σ) ∝

exp
[
−Π ̸=(σ)/kBT

]
, where k is transition rate, kB is Boltzmann

constant and T is temperature. The lower the barrier, the higher
the rate and more likely transition occurs. At the ground state
(zero stress), 2H phase is a more stable phase with a lower
potential energy. When a stress σ is applied, 1T′ phase could
become more thermodynamically favorable. Additionally, from
the kinetics point of view, the phase transition from 2H to 1T′
occurs when the barrier Π ̸= can be overcome by the external
energetic excitation. The stress σ shown in Fig. 2 reduces this
barrier, thereby facilitating the transition from 2H to 1T′. The
phase transition barriers and MEPs can be calculated as a function
of applied stress field with FD-NEB method [26]. Meanwhile, it is
also possible to analytically estimate the stress dependent barri-
ers with recently developed finite deformation Bell theory [27].
In this paper, FD-NEB method is applied to calculate the barriers
and MEPs of phase nucleation and propagation with the aim to
understand both of the thermodynamics and kinetics of the phase
transition at the atomic scale.

2. Computation method

Phase transition pathways and barriers can be calculated with
transition state methods such as nudged elastic band (NEB)
method. The conventional NEB [31] only takes atomic positions
as transition variables. However, for the phase transitions of solid
materials under stress, the lattice deformation also contributes to
the search of MEP, so it also needs to be explicitly added to the
transition variables in addition to the atom positions. Recently, a
finite deformation NEB (FD-NEB) method [26] was formulated by
adding finite deformation variables to previous solid-state NEB
method [32]. In a FD-NEB calculation, a band (which represents
transition path) is initially constructed by connecting a number
of intermediate states between the given initial and final states
(which are subjected to the same stress). These intermediate
states are generated by a geometric interpolation between the
initial and final states as an initial guess. The purpose of FD-
NEB algorithm is to move the band until it converges to the MEP
under a given stress. FD-NEB has been implemented based on
the Atomic Simulation Environment (ASE), an open source Python
package for setting up and steering atomistic simulations, which
provides an interface to various external atomistic computational
codes, such as VASP and LAMMPS.

In FD-NEB simulations, the energies, forces and stress can be
computed by either empirical atomic potentials or more accurate
Density Functional Theory (DFT). So far, there is no reliable em-
pirical atomic potential that can properly describe the phase tran-
sition of MoTe2, hence DFT is chosen as the calculator for FD-NEB
simulations. All the DFT calculations in this study are performed
using the plane-wave-based VASP [33,34]. Electron exchange and
correlation energies are calculated with the generalized gradient
approximation using the Perdew–Burke–Ernzerhof (PBE) func-
tional [35]. The projector augmented wave (PAW) method [36,37]
is used to represent ionic cores. The kinetic energy cutoff for the
plane-wave basis describing the valence electrons is set to 292 eV,
and the k-point used to sample Brillouin zones of the supercell
are 1 × 5 × 1. In order to validate the k-point convergence,
we have also conducted a few calculations up to 7 × 9 × 1 k-
point, which yield almost the same barriers and transition paths
as 1 × 5 × 1 k-point. A vacuum layer of thickness 3 nm is used to
revent the van der Waals interactions between periodic images
f MoTe2 sheet.

. Phase transition at zero stress

Fig. 3 shows the transition process of a supercell composed
y 3 MoTe2 unit cells arranged along armchair direction. To
dentify the phase nucleation process in FD-NEB calculation, the
ollowing method is applied: whenever an intermediate stable
tate (indicated by a local minimum in MEP) is observed in MEP
earch, it is taken out for another new NEB calculation (which
ses this state as a new final state). This procedure is repeated
ntil no local minimum is found on MEP, so that the nucleated
tate is directly connected to the original state by a single barrier.
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Fig. 3. The MEP of the phase transition between 2H and 1T′ under zero stress, including the nucleation inside one unit cell (a → c) and the propagation to the
eighboring cells (c → f ). The atomic structures corresponding to the local minima are plotted to demonstrate the variation of the atoms and the supercell during
he transition, where the box represents the supercell with periodic boundary condition and the arrows indicate the movements of Te atoms (yellow color). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Comparison of two possible pathways for the phase propagation. The
barrier of the path to the α phase boundary (solid black line) is lower, so the
ropagation to the right is more kinetically favorable. Note that the path to α

s the same as the c→d→e curve in Fig. 3, but with a shift of the reference
nergy.

he same approach is also applied to identify the pathway of
ropagation. Finally, the MEP obtained with this approach shows
series of barriers and minima along the path.
As shown in Fig. 3a, 1T′ phase nucleates from the unit cell on

the left, where one of the Te atoms in the bottom layer (yellow
color) shifts out toward the center of 2H hexagon; meanwhile
the neighboring atoms are slightly shifted from their original
positions. Across a metastable transition state, a local minimum
appears on the MEP, which corresponds to a stable intermediate
phase shown in Fig. 3b. Sequentially, another Te atom in the
bottom layer moves out by overcoming another small barrier to
complete the nucleation process. At the end, a unit cell with 2H
phase is completely transformed to 1T′ phase, as shown in Fig. 3c.

After the nucleation, two phase boundaries represented by α
and β in Fig. 4, are formed on each side of the transformed 1T′

cell. The phase propagation may follow two possible directions,
respectively towards α or β phase boundary. The NEB calculations
indicate that the path to α is more kinetically favorable since it
corresponds to a lower propagation energy barrier, as shown in
Fig. 4. During the first propagation (c → e), the atoms experience
similar sequential movement as observed in nucleation. However,
during the second propagation (e→f), two Te atoms move simul-
taneously, which is most likely due to the different confinement
on the unit cells. As a result, no local minimum appears on the
MEP. If there are more unit cells added along armchair direction,
it is expected that a similar propagation process would continue
in a one-cell-by-one-cell fashion.

It is noted that the process shown in Fig. 3 is still concerted
on zigzag direction due to periodic boundary conditions, meaning
that all the atoms along zigzag direction have to move simul-
taneously during the phase transition. This kind of transition is
applicable to a nanoribbon where the nucleus is able to extend
across the sheet on zigzag direction. Additionally, a recent ex-
periment [6] has shown a concerted atomic motion along zigzag
direction during the phase transition of monolayer MoTe2 sheet
activated by the electrostatic gating inside the ionic liquid. In this
experiment, the authors reported that ‘‘it is energetically favor-
able for the zigzag axis to be maintained during phase transition
through intralayer atomic plane gliding’’ and ‘‘such orientation
locking occurs on a much larger scale (about 10 µm2)’’. To investi-
gate the possible nucleation along zigzag direction, we conducted
NEB calculations on a supercell composed by several unit cells
arranged along zigzag direction. It is found that all the unit cells
transform simultaneously without forming a phase boundary.
This implies that the phase boundary along armchair direction
may have a high interface energy. As a result, in a relatively
small supercell, the barrier for nucleation would be even higher
than the barrier of concerted transition, thereby the concerted
nucleation is preferred. If the computation power allows, one
could use a larger supercell to study the nucleation on zigzag
direction, which may occur with the simultaneous nucleation
of a number of unit cells, instead of the nucleation of one unit
cell as shown along armchair direction. It is noted that DFT is
too computationally expensive to conduct such NEB calculations
with a large supercell, so a reliable empirical potential that can
properly describe the phase transition will be needed.

4. Stress modulated phase transition

In this paper, the phase transition of MoTe2 is studied under
tensile stress that is applied on armchair or zigzag direction.
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Fig. 5. Stress–strain relationships of monolayer MoTe2 at 2H and 1T′ phases
stretched uniaxially on armchair and zigzag directions. The solid curves are
fourth order polynomial fits.

Like other 2D materials, MoTe2 exhibits hyperelastic behavior
under finite deformation. Fig. 5 shows the stress–strain curves
of monolayer MoTe2 obtained from molecular statics simulations,
in which the 2D sheet is uniaxially stretched on armchair or
zigzag direction while relaxing the stress on the other direction.
The 1T′ monoclinic crystal with two-fold symmetry shows more
significant anisotropic behavior even at small strain as compared
with 2H hexagonal crystal with six-fold symmetry. Along arm-
chair direction, the ultimate athermal stress of 1T′ phase is 7.6
N/m, therefore the range of stress used in the study is 0–6 N/m.
Likewise, the range of stress applied on zigzag direction is 0–4
N/m, since the ultimate athermal stress of 2H phase along zigzag
direction is 5.6 N/m. It should be noted that the phase transition
does not occur by stretching the sheet when there is no thermal
activation. By contrast, athermal loading can lead to phase transi-
tion in some phase change materials such as silicon in which the
transition is induced by lattice instability [26,38]. It is also not
expected to see phase transition of MoTe2 in molecular dynamics
simulation due to the limitation on the accessible simulation time
scale. Therefore, FD-NEB method [26], as an indirect approach, is
applied here to search the phase transition pathways in the high
dimensional enthalpy landscape.

In general, when subjected to a nominal stress tensor σ, the
enthalpy barrier is calculated as [26]

Π ̸=(σ) = V ̸=(σ) − V0σ : (F(t) − F(o)), (1)

where V ̸= is the potential energy difference between transition
and initial state, F(t) and F(o) are respectively the deformation
gradients of the transition and initial state under stress σ with re-
spect to the reference state (whose volume is V0). While there are
no restrictions on choosing the reference state, for convenience,
we select the initial 2H phase under zero stress as the reference
state in FD-NEB calculations. For the uniaxial tensions, Eq. (1) can
be simplified as

Π ̸=(σ ) = V ̸=(σ ) − A0σ (λ(t)
− λ(o)), (2)

where σ is the 2D uniaxial nominal stress (unit: N/m) and λ
is the stretch on the loading direction. Fig. 6 shows that the
nucleation barrier decreases as the increase of stress applied on
armchair direction (σx) but slightly increase when the stress is
applied on zigzag direction (σy). A sudden drop of the nucleation

barrier is shown in Fig. 6b at 2 N/m, which implies a change
of the transition mechanism. To understand this, we calculated
the engineering strain of the transition state with respect to the
initial state, which is plotted as the parallel y-axis in Fig. 6b.
Interestingly, the strain exhibits a sudden increase at 2 N/m. This
indicates that the phase nucleation becomes more dominated by
the deformation of the supercell beyond 2 N/m. While below this
stress, the nucleation is more dominated by the atomic motions.
Nevertheless, it is found that the atom movements during the
nucleation under stress is very similar to that at zero stress as
shown in Fig. 3.

From Fig. 6a, it can be noted that the enthalpy of the nucleated
phase is greater than that of the initial phase even at σ =

6 N/m, meaning that this kind of nucleation is not thermody-
namically favorable. It further implies that the nucleation may
involve several unit cells that simultaneously transform along
armchair direction rather than a single cell nucleation. Given N
initial 2H unit cells in the supercell, if M cells transform from
2H to 1T′ simultaneously during the nucleation, the enthalpy of
the initial and nucleated structures are respectively NπH (σ ) and
(N −M)πH (σ )+MπT (σ )+ Eb(σ )t , where πH , πT are the enthalpy
of 2H and 1T′ unit cell, Eb is the phase boundary energy per unit
length, and t is the thickness of the phase boundary. Then, the
difference of enthalpy between the initial and nucleated structure
is ∆Π(σ ) = M [πH (σ ) − πT (σ )] − Eb(σ )t . When ∆Π (σ ) ≥ 0, the
ucleated phase becomes thermodynamically favorable. Hence,
he minimum number of cell nucleated simultaneously can be
alculated as

=
Eb(σ )t

πH (σ ) − πT (σ )
. (3)

s shown in Fig. 7, when σx < 2N/m, πH < πT , so the nucleation
of 1T′ in this case is always not thermodynamically favorable,
while πH becomes greater than πT as σx increases. The phase
oundary energy Eb can be calculated by [Πo(σ ) − Πn(σ )] /t ,
here Πo is the enthalpy of the supercell with all 2H unit cells,
nd Πn is the enthalpy of the supercell after the nucleation
hen some of 2H unit cells are transformed to 1T′ phase. It is
oted that Eb is the combination of the interface energies of two
hase boundaries, α and β . Using Eq. (3), the calculated values

of M are shown in Fig. 7b. A minimum number of 4, 8 and 35
unit cells are required to nucleate simultaneously under 6, 4 and
2 N/m tensile stress, so that the nucleated structures become
thermodynamically favorable. It is expected that the kinetics of
the nucleation of multiple cells as well as their atomic motions
during the transition are similar to those observed in single unit
cell nucleation.

It should be noted that only the effects of stress are considered
in the above thermodynamics analysis of nucleation. In phase en-
gineering applications, there are other approaches can be used to
tune the thermodynamics. For example, electrostatic gating [6,39]
has been shown theoretically and experimentally as an effective
way to modulate the thermodynamic relationship between 2H
and 1T′ phases. However, the kinetics of the phase nucleation
under electrostatic gating is still not clear. This could be studied
by adding electrostatic charges into NEB calculation in the future.
Moreover, it was found in previous studies that shear stress could
largely influence material’s phase transition behavior [40–42], so
it will be of great interest to further investigate the effect of shear
stress in 2D materials on their phase transition behavior.

Next, we discuss the stress modulated phase propagation. As
shown in Fig. 8a, the MEP shapes are similar to the case of zero
stress, while the barrier decreases with σx and slightly increases
with σy. Since the phase propagation does not create a new phase
boundary, it is always thermodynamically favorable, as long as
σx > 2 N/m when the newly formed 1T′ phase stays at a
lower enthalpy as compared with 2H phase. Interestingly, it is
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Fig. 6. (a) Comparison of the MEPs of phase nucleation under different stresses. The peak points in MEP correspond to the transition states of phase nucleation and
propagation. (b) The left y axis shows the nucleation barrier as a function of applied stress. The right y axis represents the deformation between 2H phase and the
transition states under the stress applied on armchair direction.
Fig. 7. (a) The enthalpy difference between 2H and 1T′ unit cell and the phase boundary energy as a function of applied stress along armchair direction. (b) The
minimum number of unit cells that are nucleated simultaneously to ensure the nucleated structure is thermodynamically favorable.
Fig. 8. (a) The MEPs of phase propagation at different stresses. (b) Comparison of two possible propagation directions as a function of the applied stress on armchair
irection. The propagation to the β phase boundary becomes kinetically favorable beyond 1 N/m.
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ound that the propagation towards β phase boundary becomes
ore kinetically favorable (with lower propagation barrier) when
x > 1 N/m, which suggests a useful way to modulate the phase
ropagation with stress. By contrast, when the stress is applied
n zigzag direction, the preferred propagation direction is always
owards α phase boundary.

Based on the simulation results calculated with the supercell,
he lower bounds of the nucleation and propagation barriers
re respectively around 1 eV and 0.7 ev when σx = 6 N/m.

These values have to be further multiplied by the number of unit
 k
cells that are transformed simultaneously along zigzag direction,
in order to get the transition barriers in a real pristine MoTe2.
nfortunately, the nucleation on the zigzag direction is to be
tudied in the future as discussed above, so the exact value of
he transition barriers in a pristine crystal is not determinable in
his study. Generally, a barrier around 0.6 eV can be overcome by
oom temperature thermal fluctuation at experimental time scale
ased on the transition state theory. Therefore, our current calcu-
ations imply that the phase transition of a pristine MoTe2 is not
inetically favorable under room temperature. In another word,
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it is not likely to have the phase transition occurring in a pristine
crystal at room temperature even under a large stress. However,
a recent experiment reported a phase transition in MoTe2 thin
films induced by mechanical deformations [5]. If this experiment
is reliable, it indicates that the material defects inside MoTe2
must play important roles in phase transition. One important
feature of synthesized MoTe2 is that they are generally divided
into many small grains by grain boundaries [43,44]. In addition,
point defects such as vacancies and antisites have been observed
in MoTe2 [45,46]. These defects could help to reduce the barriers;
meanwhile, due to lattice mismatches, these defects can also
produce significant stress concentration around nearby regions,
facilitating the phase nucleation. It is not realistic to study the
effects of sophisticated defects with DFT based NEB calculations.
Instead, a properly calibrated empirical atomic potential will be
needed. Finally, despite that applying stress alone may not be
able to achieve phase transition in a pristine MoTe2, stress can be
combined with other phase engineering approaches to modulate
the thermodynamics and kinetics of the transition, as shown in
this study.

5. Conclusion

Stress plays important role in the phase transition of mono-
layer MoTe2 and can be utilized as a useful tool in the phase
engineering applications. In this paper, the transition barriers
and pathways of a pristine MoTe2 are calculated by using finite
deformation nudged elastic band method and density functional
theory. The kinetic and thermodynamic analysis are conducted
for both phase nucleation and propagation processes. The main
findings are summarized as follows.

• The nucleation and propagation are induced by sequential
gliding of Te atoms towards the center of the hexagon inside
2H structure. The barriers can be considerably reduced by
the stress applied along armchair direction. By contrast, the
stress applied along zigzag direction increases the barriers
thus prohibits the nucleation and propagation.

• Under the stress on armchair direction, the nucleation is
thermodynamically favorable through simultaneous trans-
formation of multiple unit cells.

• Due to the non-symmetric phase boundaries, the direc-
tion of phase propagation is stress dependent and can be
determined by the propagation barriers.

• The computed barriers imply that the phase transition of a
pristine MoTe2 is not kinetically favorable at room tempera-
ture even under a large stress. The defects inside MoTe2 may
play important roles in the phase transition.
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