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ABSTRACT
Solid-state nudged elastic band (SSNEB) methods can be used for finding solid-solid transition paths when solids are subjected to external
stress fields. However, previous SSNEB methods may lead to inaccurate barriers and deviated reaction paths for transitions under stress
and finite deformation due to an inaccurate evaluation of the external work contributions in enthalpies. In this paper, a finite deformation
nudged elastic band (FD-NEB) method is formulated for finding transition paths of solids under finite deformation. Applications of FD-NEB
to a phase transition of silicon from the diamond phase to the β-tin phase under uniaxial compression are presented. The results are compared
with those from the generalized solid-state nudged elastic band method.
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I. INTRODUCTION

The Nudged Elastic Band (NEB) method is a widely used tran-
sition state search method for finding transition paths and barri-
ers. The barriers can then be used to calculate chemical reaction or
transition rates within the transition state theory in the harmonic
approximation.1 The transition paths reveal atomic scale mecha-
nisms during transition. Given the initial and final states of a transi-
tion process, the NEB converges to a minimum energy path (MEP),
i.e., the most probable transition path. The NEB method has been
applied to study a wide range of problems such as materials phase
transitions,2,3 dislocation motions,4,5 fracture formations,6 surface
diffusion,7 and so on.

The NEB method was first proposed in the mid-1990s8,9 and
since then there have been a number of improvements. One impor-
tant improvement is to generalize the method for studying tran-
sitions of solid-state materials. The conventional NEB only takes
atomic positions as transition variables, while the lattice geome-
tries are not adjustable in the optimization process. Hence, it can-
not be directly applied to study solid-solid transitions where lattice
deformation and external stress fields also contribute to the MEP.
To this end, solid-state NEB methods were proposed to include
the influence of lattice deformation. Trinkle et al. coupled the

conventional NEB with a full relaxation on the lattice cell.10 By con-
trast, Caspersen and Carter used the NEB exclusively for the lattice
cell while always relaxing the atomic positions (a rapid-nuclear-
motion approximation).11 Noting that these two approaches are
only appropriate for mechanisms dominated by either atomic or
lattice changes, Sheppard et al. proposed a generalized solid-state
nudged elastic band (G-SSNEB) method,12 which treats the atomic
and lattice variables on equal footing so that transitions involv-
ing changes in any combination of degrees of freedom are prop-
erly described. Similar to the concept of G-SSNEB, Qian et al.
developed a variable cell nudged elastic band (VC-NEB) method
in which force vectors are the derivatives of the enthalpy surface
under hydrostatic pressure with respect to both strain and atomic
positions.13

We note that, when a stressed solid undergoes finite deforma-
tion during transition, the barriers evaluated from these methods
may not be accurate depending on the choice of stress and defor-
mation measurements. In this paper, a finite deformation nudged
elastic band (FD-NEB) method is proposed based on the concept of
G-SSNEB for determining the MEP of solid-state materials under
finite deformation. The remainder of the paper is organized as fol-
lows. To provide readers a basic background, we first summarize
the principles of NEB and G-SSNEB methods and then discuss the
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limitations for studying finite deformation. After that, the FD-NEB
method is formulated by adding finite deformation variables to the
framework of the G-SSNEB method. Finally, an example on stress
dependent phase transitions of silicon from the diamond phase to
the β-tin phase is used to demonstrate the application of the FD-NEB
method.

II. NEB/G-SSNEB AND LIMITATIONS

A. NEB method
In a NEB calculation, a band is initially constructed by connect-

ing a number of intermediate states between the given initial and
final states with elastic springs. These intermediate states are usually
generated by a linear interpolation between the initial and the final
as an initial guess. The task of finding the MEP is then transferred to
minimizing the total energy of the elastic band. The “nudged” part
is to avoid the deviation of the elastic band from the MEP due to the
spring force when the path is curved, the so-called “corner cutting”
problem.

For a system containing N atoms, each state on the elastic band
has 3N degrees of freedom, so the configuration space of each state
is described by a 3N-dimension vector R = (r1, r2, . . ., rN), where
r represents atomic positions. Note that none of the intermediate
states are in equilibrium, so they are subjected to the potential forces
coming from the gradient of the potential energy,

f ipot = −∇V(Ri), (1)

which is a 3N-dimension force vector, evaluated directly from
atomistic calculations (either through empirical potentials or first-
principles methods). The superscript i represents ith state along the
elastic band. Just minimizing these forces would of course onlymove
the intermediate states into one of the local energy minima, and thus
would not help to find the MEP. Therefore, in order to keep the
intermediate states evenly spaced on the elastic band, spring forces
are applied between adjacent states, which are also 3N-dimension
force vectors. To avoid “corner cutting” and the sensitivity of select-
ing spring constant values for convergence, only certain components
of the forces are used inminimizing the band energy. Specifically, the
total force of an intermediate state i is

f i = f ipot�� + f ispr� ∥, (2)

where f ipot�� is the potential force perpendicular to the elastic band
and f ispr� ∥ is the spring force parallel to the band. The tangent vector
of the elastic band at each state is defined as the geometry change
from its higher-energy neighbor.14 The total force calculated by
Eq. (2) is used to drive the elastic band to the MEP by force-based
optimization algorithms.15 The optimization converges when the
total force is reduced to zero. Then, the exact transition state or sad-
dle point (the highest energy point along the MEP) can be obtained
with the climbing image method.16

B. Solid-state NEB method
The degrees of freedom in the NEB described above are usu-

ally atomic positions only, and the geometry of the supercell is
not adjustable during the search of the MEP. The solid-state NEB

method generalizes the atomic configurational space by adding lat-
tice degrees of freedom. Consider a crystal lattice subjected to a
constant Cauchy stress tensor σapp. Due to lattice deformation, an
internal restoring stress σicell is generated inside the lattice cell, which
can be evaluated directly from atomistic calculations. At equilib-
rium conditions, the applied stress σapp equals to the restoring stress
σicell. However, the intermediate states on the elastic band are not in
equilibrium during the transition process, so σicell ≠ σapp on these
states. Similar to the NEB, springs have to be prescribed between
neighboring states. The resultant spring stress is represented by σispr.
Then, the total stress acting on the lattice of the intermediate state
i is

σi = (σapp − σicell)�� + σispr� ∥. (3)

In G-SSNEB, the atomic and cell variables have been treated on an
equal footing. To achieve this, σapp − σicell and σispr are, respectively,
vectorized and combined with f ipot and f ispr in Eq. (2) to form a
generalized force vector, which are then projected in the directions
perpendicular and parallel to the elastic band. To achieve better con-
vergence, a scaling factor is applied to the stresses to ensure their
magnitudes scale similarly as the atomic forces.12

The atomic positions and cell geometries are simultaneously
updated by the generalized force vector until the MEP is converged.
Finally, the transition barrier (Π≠) is calculated by the enthalpy
difference between the initial and transition states,

Π≠(σapp) = V≠(σapp) −V0σapp : �(t), (4)

where V≠ is the potential energy difference between transition and
initial states, V0 is the volume of the initial lattice, and �(t) is the
strain tensor at the transition state with respect to the initial state.
The symbol “:” represents the inner product (i.e., a double contrac-
tion) of second order tensors. It should be noted that the strain
defined in G-SSNEB is different from the conventional strains used
in mechanics (see discussions in Sec. III A).

C. Limitation for finite deformation
In G-SSNEB, stress is measured by the Cauchy stress, which

is (force in current state)/(area in current state) by definition. As a
known fact in continuum mechanics, Cauchy stress is not a work
conjugate to any kind of strain, including the strain defined in G-
SSNEB. Therefore, the inner product in Eq. (4) is ill-defined and
does not yield correct work done by external stress under finite
deformation.

This can be simply illustrated by an example shown in Fig. 1,
where a cubic crystal undergoes phase transition when it is sub-
jected to a constant compressive Cauchy stress σapp. Due to the
Poisson effect, the cross section area increases upon compression,
so the applied total force, calculated by σappA, also increases dur-
ing transition. Hence, the work done by this varying force has
to be calculated by an integration given the force-displacement
relationship (which is usually not a prior knowledge for transi-
tion). The work calculated from Eq. (4), denoted by σappA0(l − l0),
can only serve as an approximation for small deformation when
A ≈ A0.

Indeed, in a laboratory, it is the applied force that is easily con-
trolled not the Cauchy stress due to the difficulty of tracking the
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FIG. 1. Phase transition of a cubic crystal under a constant compressive Cauchy
stress.

deformed area. Therefore, other types of stresses, such as the first
or second Piola-Kirchhoff (P-K) stress (detailed discussion on these
stresses is in Sec. III A) are also used in mechanics for finite defor-
mation. For example, the first P-K stress, denoted by a second order
tensor P, is the (force in current state)/(area in reference state).17
Based on this definition, when the applied force is constant, the stress
P also stays constant. In the previous example, if P is used as a con-
trol variable for searching the MEP, the work can then be correctly
calculated as PappA0(l − l0).

Assuming that the applied Cauchy stress stays constant dur-
ing the transition process, is it possible to evaluate the correct work
with Cauchy stress? In this case, the power done by Cauchy stress
per unit volume is σ : �̇ where �̇ is the rate of a small strain tensor
(which is called the power conjugate of Cauchy stress);17 therefore,
the work could be calculated by an integration of the power along
the deformation path. However, it is practically difficult to get an
integrable deformation path in NEB calculation. More importantly,
the work calculated by integration may become path dependent and
thus nonphysical. Therefore, it is challenging to get the exact value
of barriers under constant Cauchy stress due to the difficulty of eval-
uating correct external work, making it difficult to quantify the error
of G-SSNEB for transitions under finite deformation. There is a spe-
cial case, the hydrostatic compression, where the Cauchy stress (the
pressure p) is constant. In this case, the work is simply p�V where
�V is the volume change. It is worth pointing out that Eq. (4) only
provides a first-order approximation of the work term for small
deformations in this case. For example, when a cube with unit length
is hydrostatically compressed by a unit pressure into a cube with
a half of unit length, the correct work should be 7/8 while Eq. (4)
yields 3/2.

Depending on the scenarios, it is certainly of interest for
researchers to examine their previous results, when Cauchy stress
was used for barrier calculations in their studies. First of all, if
applied stress is zero, there is no work evaluation so the barrier cal-
culated by G-SSNEB is accurate. When applied stress is not zero,
one needs to check the change of the surface area on which the stress
is applied. If the change is small and negligible, the barriers calcu-
lated by G-SSNEB are acceptable. For example, during a transition
under pure shear deformation, if the lattice surface area varies lit-
tle, G-SSNEB results provide a good approximation even though the
lattice shape could be substantially sheared. In addition, as discussed
above, the calculations for hydrostatic compression cases (when the

volume change between the initial and transition states is large) also
require examination if Eq. (4) was used.

When the first or second P-K stress is used for the SSNEB calcu-
lation, the lattice deformation should be measured with their work
conjugate pairs: deformation gradient or Green-Lagrangian strain.
It is important to note that the correction cannot be done by only
simply converting σapp and �(t) into the stress and strain of the cor-
rect types at the evaluation of work, because the change of the stress
type affects the position of the transition state and MEP. Likewise,
one cannot simply take the images from G-SSNEB and recalculate
the enthalpy using P-K stress. Therefore, a different formulation on
the computation method is needed.

III. FD-NEB ALGORITHM

A. Description of finite deformation
A crystal can be modeled by a lattice cell that is replicated

by periodic boundary conditions along three lattice vectors h1, h2,
and h3. Then, the cell geometry can be described by a cell matrix
H = �h1 h2 h3�. Like in G-SSNEB, we can further confine h1 and h2,
respectively, to axis-1 and plane 1–2, as shown in Fig. 2. In this way,
the rotational degrees of freedom of the lattice are eliminated andH
only includes 6 independent variables,

H =
��������

H11 H21 H31

0 H22 H32

0 0 H33

��������
. (5)

The change of the nonzero component Hij can be considered as the
kinematics resulting from the corresponding σij acting on the cell,
which is defined in Eq. (3). This feature has been used in G-SSNEB
for stress based cell optimization.

To describe finite deformation, a reference state has to be spec-
ified so that deformation and stress can be evaluated based on this
state. While there are no restrictions on choosing the reference state,
for convenience, we select the initial state under zero stress as the
reference state in FD-NEB calculations. The lattice vectors and cell
matrix of this reference state are represented by h0α(α = 1, 2, 3) and
H0. For an arbitrary state i on the elastic band, the lattice vectors
and cell matrix are represented by hiα and Hi. Under a homoge-
neous finite deformation, h0α can be mapped to hiα by a second order
deformation gradient tensor F,

FIG. 2. Schematic of the lattice cell used in FD-NEB calculation, defined by 3 lattice
vectors.
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hiα = Fih0α, (6)

where Fi represents a finite deformation mapping of state i. Using
the cell matrix, Fi can be written as

Fi = (Hi)(H0)−1. (7)

The work conjugate of F is the first P-K stress P, which is related to
the Cauchy stress by

P = JσF−T, (8)

where J = detF is the Jacobian of the deformation gradient. The inner
product V0P:(F − I) provides the correct work done by a constant
stress P under finite deformation, where the identity tensor rep-
resents the undeformed state. Therefore, F and P can be taken as
control variables in FD-NEB. As discussed in Sec. II C, one advan-
tage of using P is that it can be directly controlled and measured in
some experiments when the applied force is known.

In continuum mechanics,17,18 another commonly used work
conjugate pair is the second P-K stress tensor (S) and the Green-
Lagrangian strain tensor (E), which are defined by

S = J(F)−1σ(F)−T (9)

and

E = 1
2
�(F)TF − I�. (10)

The second P-K stress is conceptually defined by (force in refer-
ence state)/(area in reference state), a tensor entirely defined in the
reference configuration, so it does not have a direct physical inter-
pretation. However, the second P-K stress has mathematical advan-
tages for many theoretical formulations such as describing materi-
als constitutive behavior. Therefore, it could be useful if one wants
to integrate FD-NEB calculation to higher level thermodynamic
modeling methods in which the second P-K stress is needed.

It is noted that, in G-SSNEB, the strain is defined as � =HdefH−1− I, whereHdef is for the deformed cell. Therefore, G-SSNEB actually
uses the deformation gradient (HdefH−1) instead of the conventional
strains to measure the deformation.

B. Add P-K stress to MEP search
In FD-NEB, the finite deformation variables defined above are

used for finding MEPs and computing transition barriers. There are
two possible ways to do this. The first way is to convert the restoring
stress (obtained from atomistic calculations, so the Cauchy stress)
into P-K stress, which can be combined with the prescribed P-K
stress and spring stress to form a new total P-K stress. Then, the cell
optimization can be done with this total P-K stress. Instead of this
way, we take another approach which requires minimum modifica-
tion to G-SSNEB. For each state on the elastic band, the prescribed
P-K stress is converted to a Cauchy stress based on Eq. (8) or (9). For
example, if the first P-K stress is used, the prescribed Cauchy stress
on state i is calculated as

σiapp = 1
J
Papp(Fi)T, (11)

where Papp is the applied first P-K stress. In this way, the cell opti-
mization is always controlled by the total Cauchy stress. The same
spring stress and scaling factors used in G-SSNEB can be applied
here.

After the MEP is obtained based on the modified stress, the
transition barrier is calculated as

Π≠(Papp) = V≠(Papp) −V0Papp : (F(t) − F(o)), (12)

where V≠ is the potential energy difference between transition and
initial states, F(t) and F(o) are, respectively, the deformation gradients
of transition and initial states under stress Papp with respect to the
reference state (whose volume is V0). To use the second P-K stress,
one just needs to replace Papp and F in Eq. (12), respectively, with
Sapp and E.

Before running FD-NEB, the lattice and atomic positions at
both the initial and final states have to be relaxed under the tar-
get stress Papp by using any force-based optimization such as the
damped dynamics algorithm. Similar to what is applied in FD-NEB,
Papp is first converted to σapp. Then, the residual stress σ = σapp− σcell together with the atomic forces can be gradually reduced to
zero by adjusting the structure geometry such that the lattice can be
optimized to the target stress Papp.

C. Implementation of FD-NEB
FD-NEB is implemented based on the Atomic Simulation Envi-

ronment (ASE), an open source Python package which has also been
used for G-SSNEB. The advantage of using ASE is that it provides an
interface to various external atomistic computational codes, such as
Vienna Ab initio Simulation Package (VASP) and LAMMPS. ASE
can create an “atom object” that has information about the potential
energy, atomic positions and forces, lattice geometry, and Cauchy
stress. These atomic attributes will be read by FD-NEB for calcu-
lating the total forces and stresses defined above. Finally, the calcu-
lated forces and stresses will be passed to a force-based optimization
algorithm for updating atomic positions and lattice vectors. The FD-
NEB computation code is developed based on the G-SSNEB code. It
is implemented based on an open source project Transition State
Library for ASE (TSASE).

IV. EXAMPLE: PHASE TRANSITION OF SILICON
UNDER STRESS

The phase transition of silicon is used to demonstrate the appli-
cation of FD-NEB for solid-solid transition under external stress
fields. Under ambient conditions, the most stable phase of Si is a dia-
mond structure. Under compressive stress, Si undergoes a first order
phase transition from the diamond structure (Si-I) to the metal-
lic β-tin structure (Si-II). With further increase of compression, Si
continuously exhibits many other different phases. Releasing loads
does not lead to a recovery of the initial Si-I phase but instead to
a series of metastable phases.19 Therefore, phase transition of Si is
a rather complicated process, and there are still many unknowns
despite decades of research on both experimental20–22 and theoret-
ical23–26 sides. Particularly, we have not found any transition state
calculations on Si to show how external stress changes the phase
transition barriers.
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Here, we focus on the transition from Si-I to Si-II on a pris-
tine Si structure. Meanwhile, the transition under uniaxial com-
pression is considered. An important feature of this phase tran-
sition is that the Si lattice is deformed up to 35% (measured
between initial and transition states) and hence a finite deformation
problem.

The energy, interatomic force, and stress were evaluated from
the density functional theory (DFT). All the DFT calculations in this
study were performed using the plane-wave-based Vienna Ab initio
Simulation Package (VASP27,28). Electron exchange and correlation
energies were calculated with the generalized gradient approxima-
tion using the Perdew–Burke–Ernzerhof (PBE) functional.29 The
projector augmented wave (PAW) method30,31 was used to repre-
sent ionic cores, and the kinetic energy cutoff for the plane-wave
basis describing the valence electrons was set to 319 eV. A 6 × 6 × 6
k-point mesh was used to sample the Brillouin zone.

The atomic structure of Si used in this study at different phases
is shown as the inserted images in Fig. 3(a). The supercell contains 8
atoms. At zero stress, there is no work evaluation in the MEP calcu-
lation, so FD-NEB yields the same results as G-SSNEB, as shown in
Fig. 3(a). The reaction coordinate primarily involves lattice degrees
of freedom. When a constant load is applied, the first P-K stress
stays constant throughout the transition process while the Cauchy

FIG. 3. (a) Zero stress MEP. The inserted images show atomic structures of Si-I
(5.47 Å × 5.47 Å × 5.47 Å), Si-II (6.92 Å × 6.92 Å × 2.55 Å), and transition state
(6.35 Å × 6.35 Å × 3.45 Å). (b) Comparison of MEPs calculated by using Cauchy
stress (with G-SSNEB) and first P-K stress (with FD-NEB) at 10 GPa compressive
stress. MEPs are fitted with splines.

FIG. 4. Barriers as a function of applied stress. The differences are calculated by(Π≠Cauchy −Π≠PK)�Π≠PK.

stress varies. If one disregards this practical loading constrains, sec-
ond P-K stress can also be used legitimately. Although the Cauchy
stress leads to ill-defined and incorrect enthalpy evaluations, the cal-
culations with both the Cauchy and P-K stresses are conducted at
different stress levels for comparison. The typical MEP is shown
in Fig. 3(b) for a 10 GPa uniaxial stress. It is not surprising that
different stress representations not only lead to different barriers
but also different paths. This difference becomes more significant
with increasing applied stress, demonstrated by the variation of bar-
riers with stress in Fig. 4. It is noted that the barrier disappears
when the applied Cauchy stress is beyond 12 GPa, which means
that the transition could occur in this case without any thermal
activation.

The transition pathway calculated with the Cauchy stress is
qualitatively similar to the ones calculated with P-K stress in this
example. However, it may not be the case for other material systems.
If two or several (stress sensitive) competing transition mechanisms
exist simultaneously, the calculation conducted with the Cauchy
stress may lead to a different pathway due to the incorrect evaluation
of enthalpy.

V. SUMMARY
Solid-solid transitions are usually accompanied with finite lat-

tice deformation. Accurate evaluation of the transition barriers is
critical for computing kinetic rates of the transition. Under applied
stresses, the work done by the external load contributes significantly
to the barrier height and needs to be evaluated carefully. In this
paper, we emphasize that the previous solid-state NEB algorithm
may lead to inaccurate barriers and deviated reaction paths when
the Cauchy stress is used for work evaluations under finite defor-
mation. The FD-NEB method is formulated by introducing finite
deformation variables to the G-SSNEB method and implemented
based on facile modifications to the previous algorithm. An example
of silicon phase transition is presented to demonstrate the difference
brought by the new implementation.
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a b s t r a c t 
Stress can be applied to modulate solid–solid phase transitions because the stress changes 
the transition energy barrier which determines the phase transition rate. The lower the 
barrier, the higher the rate and more likely the phase transition occurs. This paper presents 
a new theoretical method – finite deformation Bell theory (FD-BT), which is developed based 
on the concept of the original Bell theory, for predicting transition barriers as a function 
of the applied stress field. The theory is applied to study the phase transitions of two 
model materials which exhibit distinct transition mechanisms: 2D MoTe 2 from 2H phase 
to 1T ′ phase, and silicon from diamond phase to β-tin phase. The theoretical predictions 
are compared with the atomistic simulation results obtained from the finite deformation 
nudged elastic band (FD-NEB) method, which has been recently developed to compute 
stress dependent barriers of the transitions under finite deformation. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 
Solid–solid phase transition has been an important topic in mechanics and materials research as it appears on many 

material systems. The dynamic control of transitions between different phases can lead to broad technological applications. 
Particularity, stress can be directly employed as a useful tool to control phase transition process. Meanwhile, stress also 
commonly exists and plays important role in various phase engineering techniques. 

The fundamental mechanism of stress modulated phase transition can be described by Fig. 1 , in which a material trans- 
fers from a stable phase P1 to another stable phase P2. The most probable phase transition path, i.e. minimum energy path 
(MEP), is illustrated by a double-well curve. To have a phase transition from P1 to P2, the material has to overcome a bar- 
rier ( " # = ) by crossing the transition state at the peak of MEP. Based on the transition state theory within the harmonic 
approximation ( Hanggi et al., 1990; Olsen, 2006 ), the barrier determines the phase transition rate (through an exponential 
function shown in the figure, see detailed discussion in Section 2.2 ), which is an important thermodynamic variable that 
determines the likelihood of phase transition. The lower the barrier, the higher the rate and more likely the transition oc- 
curs. The MEP can be modulated by the applied stress field. Under an external stress, the energy landscape is generalized to 
a static enthalpy landscape (not including kinetic energy) in order to include the work done by external stresses. In Fig. 1 , 
the stress S 1 reduces the barrier between phase P1 and the transition state, thereby facilitating the transition from P1 to 
P2. By contrast, the stress S 2 raises this barrier so prohibits the transition from P1 to P2; meanwhile it lowers the barrier 
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Fig. 1. Schematic of stress dependent minimum energy path (MEP). In the equation, k is transition rate, k B is Boltzmann constant and T is temperature. 
on the other side of MEP, making the transition from P2 to P1 easier. The phase transition rate also depends on the acti- 
vation energy ( k B T ), so increasing temperatures can help to overcome transition barriers. The phase transition of solids can 
be influenced by either engineering the barriers or varying the thermal excitation. At the meso or continuum level, phase 
transitions at finite temperatures can be simulated with thermodynamic methods such as the phase field method, where 
the parameters in these methods are usually related to the transition barriers. Therefore, the evaluation of stress dependent 
barriers is critical for modeling phase transitions. 

Transition MEPs and barriers can be calculated by atomistic simulations using transition state search methods such as 
nudged elastic band (NEB) method. The conventional NEB ( Jónsson et al., 1998 ) only takes atomic positions as transition 
variables. Hence, it can not be directly applied to study solid–solid transitions when lattice deformation and external stress 
field also contribute to the MEP. Moreover, solid–solid transitions are usually accompanied with finite lattice deformation. 
Recently, we developed a finite deformation NEB (FD-NEB) method ( Ghasemi et al., 2019 ) for finding transition pathways of 
solids under finite deformation. FD-NEB was formulated by introducing finite deformation variables to the previous solid 
state NEB method ( Sheppard et al., 2012 ). 

In order to determine the barriers under many possible external stresses, a large number of FD-NEB simulations must be 
performed. To avoid such high computational cost, the approximate theory to estimate stress dependent barriers is needed. 
Unfortunately, there is no existing theory readily to be applied, while similar problems have been studied on force depen- 
dent chemical reactions in the field of mechanochemistry ( Dudko et al., 2006; Konda et al., 2011; Kucharski and Boulatov, 
2011; Ribas-Arino et al., 2009a ). A commonly used method is Bell theory ( Bell, 1978 ), which allows one to estimate chemical 
reaction barriers as a function of applied force using the reaction results calculated at zero force. However, the Bell theory 
was formulated on discrete atomic systems in terms of forces and displacements of atoms, so one cannot directly apply 
Bell theory to study phase transition of solid materials coupled with stress and deformation. In addition to the Bell theory, 
Zhu et al. (2005) provided a method to compute the energy barrier of a transition process under constant strain, where 
they used a perturbation analysis on the MEP for a generically defined reaction coordinate. In this paper, we propose a 
finite deformation Bell theory (FD-BT) developed based on the concept of original Bell theory and continuum mechanics, for 
predicting transition barriers as a function of the applied stress. 

The remainder of this paper is organized as follows. In Section 2 , we briefly introduce the idea of the Bell theory, followed 
by the formulation for the method of FD-BT. After that, a 1D example, which has exact analytical solutions, is used to 
demonstrate the application of the FD-BT. In Section 3 , we briefly introduce the principle of the FD-NEB computational 
method, which can provide numerical validations to the FD-BT predictions. In Section 4 , the FD-BT is applied to study the 
phase transitions of 2D MoTe 2 and bulk Si, where the theoretical predictions are compared with FD-NEB simulations. Some 
extended discussions are provided in Section 5 . Finally, the paper is summarized in Section 6 . 
2. Finite deformation bell theory for solid–solid phase transition 
2.1. Bell theory and limitations 

The original Bell theory ( Bell, 1978 ) was developed to describe the receptor-ligand dissociation rate under external forces 
for cell adhesion. Since then, it has been generalized to study the force dependent chemical reactions such as increased 
rate of chemical bond dissociation under external forces ( Dudko et al., 2006; Kucharski and Boulatov, 2011; Ribas-Arino 
et al., 2009a ). The idea of Bell theory can be illustrated by an example of ring opening of a Benzocyclobutene molecule, 
as shown in Fig. 2 . In the case of no external force, the molecule has to overcome an energy barrier of V # = in order to 
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Fig. 2. Force dependent ring opening (3–4 bond) of Benzocyclobutene molecule. The figure is modified from Ribas-Arino et al. (2009b) . 
transform to the ring-opened (covalent bond between atoms 3 and 4) final state, where the transition rate k ∝ exp ( V # = /k B T ) . 
When a pair of external force f is applied on atoms 1 and 2, based on the Bell theory, the barrier is changed by − f#R 12 
where #R 12 = R ( t ) 12 − R ( o ) 12 is the difference in distance between atoms 1 and 2 from original (o) to transition (t) state, thus 
the reaction rate becomes k ( f ) ∝ exp [(V # = − f#R 12 ) /k B T ] . In the Bell theory, #R 12 is approximated from the original and 
transition states at zero force. Hence, the Bell theory provides a linear approximation to force dependent chemical reaction 
barriers based on zero force atomistic calculations. 

It can be noted that the Bell theory was formulated on discrete molecular systems in terms of forces and displacements 
of atoms. To apply this method for studying stress dependent phase transition of solids, one has to convert stress to atomic 
forces, and deformation to atomic displacements. This process is rather complicated and infeasible in practice. Instead, we 
could directly bring in continuum mechanics variables and build the connections between stress and transition barriers, so 
that the stress dependent barriers can be predicted based on the barrier calculated at zero stress, similar to the concept of 
the Bell theory. Following this idea, a new theoretical approach is developed in the framework of continuum mechanics. 
2.2. Formulation of finite deformation bell theory 

Consider a phase change crystal material subjected to a constant second Piola–Kirchhoff (P–K) stress, denoted by S . The 
static enthalpy (which does not include kinetic energy) of the system, denoted by ", can be written as 

"(S ) = V(S ) − V 0 S : E (S ) , (1) 
where V is the potential energy of the system, V 0 is the initial lattice volume, E is the Green-Lagrangian strain with respect 
to the original zero stress state, and the inner product (represented by “: ′′ , implying a double contraction on tensors) of 
S and E gives the work done by the stress. The enthalpy difference between the original and transition states gives the 
transition barrier 

"# = (S ) = "(t) (S ) − "(o) (S ) , (2) 
where (o) and (t) respectively represent the original and transition state. The stress dependent phase transition rate can be 
calculated by the transition state theory. A harmonic approximation can be applied to simplify the transition state theory 
for crystal materials when the temperature of interest is low compared with the melting temperature of the materials 
( Olsen, 2006 ). Then, the stress dependent phase transition rate is written as 

k (S ) = ν exp [−"# = (S ) 
k B T 

]
, (3) 

where the prefactor ν depends on the atomic vibrational frequency at the original and transition states ( Hanggi et al., 1990; 
Olsen, 2006 ). The period of a typical atomic bond-stretch vibration is on the order of 0.1 ps, thus yielding a prefactor on the 
order of 10 13 s −1 . Since k (S ) is exponentially dependent on the barrier, it is reasonable to neglect the much weaker stress 
dependence of the prefactor. Once " # = ( S ) is known, one can use Eq. (3) to calculate transition rate at temperature T . This 
rate can be taken as an important parameter for thermodynamic modeling of phase transitions at the larger length scales. 

Fig. 3 describes the relationship between two phase transitions, occurring respectively under zero stress (I → III) and 
under stress S (II → IV), where I, II, III and IV represent four different states. The schematic lattice cells with two atoms 
in the figure are used to demonstrate the lattice deformation and atoms movements during transitions. The deformation 
measurements of different states are defined in the figure. A Green-Lagrangian strain tensor E (t) (0) describes the deformation 
due to phase transition at zero stress. The deformations from state I to states II and IV are respectively described by E (o) (S ) 
and E (t) (S ) . The latter one includes the contributions from both elastic deformation and phase transition. The purpose of the 
proposed theory is to predict the barrier " # = ( S ) under stress S using the zero stress barrier " # = (0). 

Substitute Eq. (1) into Eq. (2) , the barrier for phase transition at stress S can be written as 
"# = (S ) = V (t) (S ) − V (o) (S ) − V 0 S : ( E (t) (S ) − E (o) (S )) . (4) 
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Fig. 3. Schematic relationship between the transitions under zero stress and under stress S . The blue box represents a crystal lattice with 2 atoms. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
At both original and transition states (II and IV in Fig. 3 ), we can expand the potential energies in a Taylor series around 
zero stress and neglect the terms higher than the second order 

V (o) , (t) (S ) = V (o) , (t) (0) + S : ∂ V (o) , (t) (0) 
∂S + 1 

2 S : ∂ 2 V (o) , (t) (0) 
∂ S 2 : S + O(S 3 ) . (5) 

This expansion is to build the connection between potential energies V at zero stress and at stress S , for both original state 
(I → II) and transition state (III → IV). 

Since both original and transition states (II and IV) are in equilibrium, the variation of enthalpy equals zero, δ"(o),(t) (S ) = 
0 , then from Eq. (1) we can get 

S = 1 
V 0 ∂ V (o) , (t) 

∂ E (o) , (t) . (6) 
Using this relationship, the first and second order derivatives of V can be written as 

∂ V (o) , (t) 
∂S = V 0 S : ∂ E (o) , (t) 

∂S , (7) 
and 

∂ 2 V (o) , (t) 
∂ S 2 = V 0 [I : ∂ E (o) , (t) 

∂S + S : ∂ 2 E (o) , (t) 
∂ S 2 

]
, (8) 

where I is the fourth order identity tensor. Substitute Eqs. (7) and (8) into Eq. (5) at S = 0 , we can get 
V (t) (S ) − V (o) (S ) = V (t) (0) − V (o) (0) + V 0 

2 S : 
[
∂ E (t) (0) 

∂S − ∂ E (o) (0) 
∂S 

]
: S + O(S 3 ) . (9) 

Meanwhile, we can Taylor expend the strains E (o) , (t) (S ) at zero stress to the first order and get 
E (t) (S ) − E (o) (S ) = E (t) (0) − E (o) (0) + S : [∂ E (t) (0) 

∂S − ∂ E (o) (0) 
∂S 

]
+ O(S 2 ) , (10) 

which is then substitute into Eq. (4) along with Eq. (9) , yielding the barrier at stress S 
"# = (S ) = "# = (0) − V 0 S : ( E (t) (0) − E (o) (0)) − V 0 

2 S : 
[
∂ E (t) (0) 

∂S − ∂ E (o) (0) 
∂S 

]
: S + O(S 3 ) , (11) 

where "# = (0) = V (t) (0) − V (0) (0) is the barrier at zero stress, and E (o) (0) = 0 for zero stress reference state. 
In Eq. (11) , a linear dependence of the barrier on the applied stress can be considered as a generalization of the Bell 

theory in terms of a continuum description. In addition, a nonlinear response comes from the second order term, whose 
coefficients correspond to the difference of material’s compliances between transition and original states. To estimate the 
barriers with Eq. (11) , one firstly needs to use transition state search methods such as FD-NEB to get the barrier " # = (0) and 
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the strain E (t) (0) of transition state at zero stress. For the second order correction, one needs to calculate the material com- 
pliances of both original and transition states. This can be done through molecular statics simulations. Since transition states 
are metastable, a second-order optimization method such as quasi-Newton algorithm may be needed, which only searches 
the energy minima in the vicinity of the transition states in order to avoid large perturbations during optimization process. 
It is noted that, the higher order corrections to the barrier beyond the second order may be needed, when materials exhibit 
strong nonlinearity at original or transition state. This could be done by taking the higher orders of V and E expansions, 
which will lead to the calculations of higher order material stiffness or compliance for both original and transition states. 

Here, the theory is formulated using the second P–K stress which has mathematical advantages for describing materials 
constitutive behavior. Alternatively, following the same process, one can also derive Eq. (11) in terms of the first P–K stress 
along with the deformation gradient, which form a work conjugate pair. One advantage of using the first P-K stress is that 
it can be experimentally measured when the applied force is known, making the direct comparison between the theory 
and experiments easier. On the other side, it is not convenient to use Cauchy stress for describing the stress dependent 
barrier when the transition undergoes finite deformation, because Cauchy stress is not a work conjugate to any kind of 
strain, making it difficult to write down the work as shown in Eq. (1) . However, there is a special case – the hydrostatic 
compression, where the Cauchy stress (the pressure p ) is a constant, so the work is simply p #V where #V is the volume 
change. 

There is one situation that needs particular attention when applying the proposed method. The expansion in Eq. (5 ) is to 
build the connection between potential energies V at zero stress and stress S , for both original state (I → II) and transition 
state (III → IV). Such expansion is always meaningful for the original state. However, it is only meaningful for the transition 
state when the following condition is satisfied: the configuration of state III can be mapped to the configuration of state IV 
through an elastic deformation. Otherwise, the term V (t) (0) on the right hand side of Eq. (5) cannot be used to represent 
the actual transition state at zero stress (III). The above condition is approximately true when the phase transition pathway 
under stress S is similar to the one under zero stress. However, such condition may not be satisfied when the transition 
mechanism changes beyond a certain stress. In these cases, the following additional steps have to be added in order to 
apply the proposed theory. First, the critical stress at which the transition mechanism starts to change has to be identified 
from atomistic simulations such as FD-NEB. Then, this critical stress state is taken as a new reference state (instead of zero 
stress state) to predict the barriers beyond such stress, following the similar process described above. In this way, the theory 
will be applied in a piecewise manner, where the different stress regions are separated by the critical stresses at which the 
transition mechanism starts to change. 

Microscopically, the above elastic mapping assumption for transition state can be interpreted as follows: the displace- 
ments of atoms from configuration III to IV follow Cauchy-Born rule ( Born and Huang, 1954; Tadmor and Miller, 2011 ), 
which states that the displacements of atoms are set by a deformation gradient plus an internal relaxation associated with 
the relative motion of sublattices. In reality, in addition to the displacements set by Cauchy-Born rule, there may be ex- 
tra atomic displacements coming from phase transition. These extra displacements could be considered in our formulation 
implicitly by adding the reaction coordinate (which include both lattice deformation and atomic displacements) as a con- 
trol variable, similar to the approach used by Zhu et al. (2005) . However, the reaction coordinate is not an explicit variable 
that can be conveniently computed in theory. Therefore, our current formulation is kept simple for the purpose of easy 
implementation. 
2.3. A simple example: “Phase Transition” of a 1D chain 

Consider a fictitious 1D chain composed by a series of beads as shown in Fig. 4 a. At the original state, the equilibrium 
distance between two neighboring beads is x 0 . This distance is changed by x when a force f is applied. It is assumed that 
all the beads are always equally spaced when they are subjected to stretch or compression. The interaction energy between 
two neighboring beads is described by a Cosine function 

V(x ) = − cos (2 πx ) , (12) 
where −0 . 5 ≤ x ≤ 1 . 5 . Then, under the force f , the enthalpy of the system can be written as 

"(x ) = V(x ) − f x. (13) 
Note that all the physical quantities used in this example are unitless for the convenience of discussion. 

The enthalpy profiles of the system at f = 0 and f = ±0 . 6 are shown in Fig. 4 b. There are two possible stable states: 
one is at the left valley around original state ( x = 0 ), the other one is around the right valley ( x = 1 ) across an “energy 
barrier”. Interestingly, the barrier shifts up and down depending on the direction and magnitude of the applied force f . 
From d"/ dx = 0 , the positions of the original (o) and transition (t) states can be evaluated as a function of f 

x (o) ( f ) = 1 
2 π arcsin ( f 

2 π
)

and x (t) ( f ) = 1 
2 − 1 

2 π arcsin ( f 
2 π

)
. (14) 

Substitute Eq. (14) into Eq. (13) , we can obtain the exact values of barrier " # = as a function of f , which are plotted as the 
solid line in Fig. 4 c. Meanwhile, the barrier can be estimated using the proposed theory. Based on Eq. (11) , the barrier can 
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Fig. 4. (a) A chain made by series of beads. The equilibrium distance between two beads is x 0 , and the deformation under force f is x . (b) Enthalpy profiles 
between two neighboring beads at different forces. (c) Comparisons of transition barrier between exact values and approximated ones. 
be written as 

"# = ( f ) = "# = (0) − f [ x (t) (0) − x (0) (0)] − 1 
2 f 2 

[
d x (t) (0) 

df − d x (o) (0) 
df 

]
, (15) 

where x (0) (0) = 0 and x (t) (0) = 1 / 2 , and from d "(o) , (t) /dx = 0 , the second order coefficients can be written as 
d x (o) , (t) (0) 

df = 1 
V (o) , (t) ′′ (0) , (16) 

which describes the compliance of the 1D system. In this example, because V (o) (0) ′′ > 0 and V (t) (0) ′′ < 0 , the second order 
contribution is always positive, so increasing the value of barriers with respect to the first order approximation. However, 
this cannot be generalized to multidimensional material systems in which the second order term can be either positive or 
negative, as shown in the examples in Section 4 . 

The barriers of this fictitious 1D system are exactly evaluated, while for a real phase change material, the barrier needs 
to be calculated from atomistic simulations using transition state search methods such as finite deformation NEB (FD-NEB) 
method. In next section, we briefly introduce the principle of FD-NEB method, which was developed recently for determining 
transition paths and barriers of solid-state materials under finite deformation. 
3. Atomistic simulation method: finite deformation nudged elastic band method 

Molecular dynamics (MD) simulations are widely used to study the mechanical behavior of solids by accounting for the 
motion of atoms. However, the phase transitions of interest can be many orders of magnitude slower than vibrations of the 
atoms, so a direct MD simulation may not be feasible due to the limitation on the accessible simulation time scale. For 
example, the transition rate of a phase transition process with a barrier of 0.6 eV can be calculated as k = 834 s −1 with 
Eq. (3) where ν is taken as 10 13 s −1 at T = 300 K. Thus, the average time one needs to wait to observe this transition 
event is #t = 1 /k = 1 . 2 ms. This time scale is far beyond the capability of present day computers, so such transition event 
is not observable in MD simulations. Therefore, many methods have been developed to accelerate MD simulations ( Miron 
and Fichthorn, 2003; Voter, 1997; Xu and Henkelman, 2008 ), however it is still challenging to access such long time scales, 
especially for large size systems or when the energy and force are evaluated with first principle methods. On the other 
hand, the indirect simulation method – transition state search methods, such as nudged elastic band (NEB), have been used 
to study transition events. Given the initial and final states of a transition process, the NEB method can be used to find the 
minimum energy path (MEP). 

The conventional NEB ( Jónsson et al., 1998; Mills et al., 1995 ) only takes atomic positions as transition variables, so it can 
not be directly applied to study solid–solid transitions where lattice deformation and external stress field also contribute 
to the search of MEP. Solid-state NEB methods have been proposed to include the influence of lattice deformation and 
stress. Recently, we noticed that the previous solid-state NEB algorithm leads to inaccurate barriers and deviated transition 
paths, due to an inaccurate evaluation on the external work contributions in enthalpies and barriers. To this end, a finite 
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Fig. 5. Schematics of FD-NEB calculation from phase P1 to P2. Blue boxes represent lattice cells. 
deformation NEB (FD-NEB) method ( Ghasemi et al., 2019 ) was formulated by adding finite deformation variables to previous 
solid-state NEB method ( Sheppard et al., 2012 ). In addition to the FD-NEB, a pioneering work by Huang et al. (2009) provided 
a stress-controlled NEB method which was applied to study the nanoscale fracture mechanisms in silicon. 

The FD-NEB calculation can be illustrated in Fig. 5 , where a crystal material (the lattice is represented by a blue box) 
transforms from phase P1 to P2 when it is subjected to a constant stress S app . To describe the finite deformation of the 
lattice during phase transition, nonlinear mechanics variables are used to control the search of MEP. FD-NEB can be formu- 
lated with either first or second P–K stress in a similar way. To be consistent with our formulation of FD-BT theory, here we 
present the idea of FD-NEB with the second P–K stress. As shown in Fig. 5 , a band is initially constructed by connecting a 
number of intermediate states between the given initial and final states with elastic springs. These intermediate states are 
usually generated by a geometric linear interpolation between the initial and final states as an initial guess. The purpose of 
FD-NEB algorithm is to move the elastic band until it converges to the MEP under stress S app . 

For a material containing N atoms, each state on the elastic band has 3 N atomic degrees of freedom. None of the in- 
termediate states are in equilibrium due to phase transition, so they are subjected to the potential forces coming from the 
gradient of the potential energy f i pot = −∇V( r i 1 , r i 2 , · · · , r i N ) , where r represents atomic positions. The superscript i repre- 
sents i th state along the elastic band. Minimizing these forces only moves the intermediate states into one of the local 
energy minima, and thus would not help to find the MEP. Therefore, spring forces are applied in order to keep the interme- 
diate states evenly spaced on the elastic band. To avoid the sensitivity of selecting spring constant values for convergence, 
only certain components of the forces are used. Specifically, the total force of an intermediate state i is 

f i = f i pot | ⊥ + f i spr | ‖ , (17) 
where f i pot | ⊥ is the potential force perpendicular to the elastic band and f i spr | ‖ is the spring force parallel to the band. 

In addition to atomic degrees of freedom, the finite lattice deformation is also added to MEP search. When subjected 
to the external stress, an internal restoring stress is generated inside the lattice. This stress does not equal the applied 
stress, since the intermediate states are not in equilibrium. Hence, similar to atomic degrees of freedom, spring stress is 
prescribed between neighboring states. It is noted that the internal restoring stress, calculated from atomic simulations (by 
either empirical potentials or first-principles methods), is the Cauchy stress defined in current configuration. Therefore, in 
FD-NEB, the prescribed P-K stress ( S app ) is converted to a Cauchy stress ( σi 

app ). Then, the total stress acting on the lattice of 
intermediate state i is 

σi = ( σi 
app − σi 

cell ) | ⊥ + σi 
spr | ‖ . (18) 

where σi 
cell and σi 

spr denote the restoring and spring stress respectively. In order to treat the atomic and cell variables on 
an equal footing, σapp − σi 

cell and σi 
spr are respectively vectorized and combined with f i pot and f i spr to form a generalized 

force vector. The atomic positions and cell geometries are simultaneously updated by this generalized force vector using any 
force-based optimization algorithms ( Sheppard et al., 2008 ) until the MEP is converged. Finally, the transition barrier ( " # = ) 
is calculated by the enthalpy difference between the original and transition states 

"# = (S app ) = V # = (S app ) − V 0 S app : (E (t) − E (o) ) , (19) 
where V # = is the potential energy difference between transition and initial states, E (t) and E (o) are respectively the Green- 
Lagrangian strain tensors of transition and original states under stress S app with respect to the reference state (whose volume 
is V 0 ). For convenience, the original state under zero stress is selected as the reference state in FD-NEB. 

A large number of FD-NEB simulations are needed in order to obtain the barriers at different stress fields. These cal- 
culations are computationally costly if the forces and stresses are calculated from first-principle methods. Therefore, it is 
meaningful to use the proposed FD-BT theory as a guide to explore the entire stress space and then use FD-NEB for valida- 
tion at selected stress levels. 
4. Examples 

In this section, the FD-BT is applied to calculate the stress dependent barriers of phase transitions of 2D MoTe 2 and 
bulk silicon, which exhibit two distinct transition mechanisms. Meanwhile, the theoretical predictions are compared with 
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Fig. 6. Cross-sectional and basal plane views of 2D MoTe 2 at different phases. Blue color: Mo; orange/yellow color: Te atoms on the top and bottom layers. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
atomistic simulations with FD-NEB. In the simulations, the energy, interatomic force and stress are evaluated from the den- 
sity functional theory (DFT). All the DFT calculations in this study are performed using the plane-wave-based Vienna Ab- 
initio Simulation Package (VASP) ( Kresse and Furthmüller, 1996; Kresse and Hafner, 1993 ). Electron exchange and correlation 
energies are calculated with the generalized gradient approximation using the Perdew–Burke–Ernzerhof (PBE) functional 
( Perdew et al., 1996 ). The projector augmented wave (PAW) method ( Blöchl, 1994; Kresse and Joubert, 1999 ) is used to rep- 
resent ionic cores. The kinetic energy cutoff for the plane-wave basis describing the valence electrons is set to 292 eV and 
420 eV respectively for MoTe 2 and silicon, and the corresponding k-point used to sample Brillouin zones are 7 × 9 × 1 
and 15 × 15 × 15. A vacuum layer of thickness 3 nm is used to separate the periodic images of MoTe 2 sheet. 
4.1. Phase transition of 2D MoTe 2 

As shown in Fig. 6 , the monolayer MoTe 2 in 2H phase is composed of a layer of hexagonally arranged Mo atoms, sand- 
wiched between two layers of Te atoms. 2H phase is semiconductor with a direct band gap. When one of the Te layers in 2H 
phase is shifted, the Te atoms are in octahedral coordination around Mo atoms, generating a 1T phase. 1T structure is unsta- 
ble in the absence of external stabilizing factors. As a result, it turns into monoclinic and conducting 1T ′ phase, a distorted 
version of the 1T structure. MoTe 2 has a lower ground state energy at 2H phase ( Duerloo et al., 2014 ). The dynamic control 
of transitions between these two phases can lead to revolutionary device applications such as memory devices ( Wuttig and 
Yamada, 2007 ), reconfigurable circuits ( Wang et al., 2016 ) and topological transistors ( Qian et al., 2014 ) at atomically thin 
limits. 

A recent experiment showed that nanoindentation applied by Atomic Force Microscope can induce phase transition on 
suspended MoTe 2 thin films at ambient condition ( Song et al., 2016 ). In addition, the phase transition of monolayer MoS 2 
and MoTe 2 has been experimentally reported through chemical/thermal doping ( Lin et al., 2014; Ma et al., 2015 ), laser 
patterning ( Cho et al., 2015 ) and electrostatic gating ( Wang et al., 2017 ), where stress plays an important role due to thermal 
expansion, lattice mismatches and interactions with substrates. So far, the theoretical and computational studies on phase 
transition of 2D TMDC are quite limited. Particularly, the role of stress field on the transition barriers has not been explored. 

The uniaxial tensile loading along armchair direction is considered in present study. Fig. 7 shows the stress-strain curves 
of monolayer MoTe 2 obtained from molecular statics simulations, in which the sheet is stretched on armchair direction while 
relaxing stress on the other two directions. For 2D materials, we use 2D stress (unit: N/m) tensor, which have 3 independent 
components: S 11 , S 22 and S 12 . The 2H and 1T ′ phases at zero stress are respectively represented by a 0 and b 0 . Note that the 
strains are all measured with respect to state a 0 , so the strain of 1T ′ phase at zero stress is not zero. The purpose of the 
FD-BT is to predict the barrier of the transition a → b under stress based on the information of the transition a 0 → b 0 . It is 
worth pointing out that, there was no sign of phase transition before failure during the stretching of the 2H phase (through 
stress or strain control), meaning that the transition is not expected to occur only by stretching when there is no thermal 
activation. 

The application of FD-BT requires the inputs from zero-stress phase transition, as shown in Eq. (11) , including the barrier 
" # = (0), the strain of transition state E (t) (0), as well as the tangent compliances c (o),(t) (0) = ∂E (o),(t) (0) / ∂S of both original 
and transition states which are needed for the second order correction. Therefore, zero-stress FD-NEB simulation was firstly 
performed. The obtained MEP curve is shown in Fig. 8 a, where the reaction coordinate of MEP represents the distance 
between two neighboring states on the elastic band in terms of both atom positions and lattice deformation. The snapshots 
in Fig. 8 b describe atomic motions during the transition process. In the beginning of the transition process, one Te atom in 
the bottom layer (yellow color) shifts out toward the center of 2H hexagon; meanwhile other atoms are slightly displaced 
from their original positions, leading to the transition state represented by B. The difference of enthalpies between this 
transition state and the original state gives the transition barrier (which has to be overcome to initiate the transition). 
Beyond this point, a shallow minimum appears on the MEP at C, indicating a stable intermediate phase. Finally, another Te 
atom in the bottom layer moves out by overcoming a small barrier at D, completing the transition process. 
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Fig. 7. Stress–strain relationships of monolayer MoTe 2 at 2H and 1T ′ phases, stretched on armchair direction, where the strain is measured with respect to 
zero stress 2H phase. The solid curves are calculated from the derivatives of potential energy. The inserted images show the unit cells used in simulations. 

Fig. 8. (a) Phase transition MEPs of MoTe 2 obtained from FD-NEB calculations, where the enthalpy is calculated for the computation cell. (b) The snapshots 
show the atomic motion during transition process, where the box represents the computation cell. The lattice constants for stress free 2H and 1T ′ structures 
are respectively 6.15 Å × 3.56 Å and 6.40 Å × 3.42 Å. 

FD-NEB simulations were also performed to get barriers at different stress levels. The MEP curves under 3 N/m and 
5 N/m are shown in Fig. 8 a. The barrier drops with the increase of applied stress, meaning that a stretch on armchair 
direction facilitates the phase transition of monolayer MoTe 2 . The atomic motions during the transitions under stress are 
similar to those of zero stress; meanwhile the intermediate phase at C becomes more stable as the increase of tensile stress. 

Next, the information obtained from zero stress simulation are taken as inputs to FD-BT for predicting the barriers as a 
function of applied stress. For an uniaxial stress applied on armchair direction, Eq. (11) can be simplified as a function of 
the applied stress S 11 

"# = (S 11 ) = "# = (0) − A 0 E ( t ) 11 (0) S 11 − A 0 
2 (c ( t ) 11 (0) − c ( o ) 11 (0)) S 2 11 + O( S 3 11 ) , (20) 

where A 0 is the area of monolayer 2H MoTe 2 sheet at zero stress. The barrier " # = (0) (shown in Fig. 8 a) and the strain 
E ( t ) 11 (0) are the direct outputs from FD-NEB simulation under zero stress. The tangent compliance of 2H phase c ( o ) 11 (0) is 
calculated from the stress-strain curve plotted in Fig. 7 . In addition, the tangent compliance of transition state c ( t ) 11 (0) can 
be obtained from molecular statics simulations. An uniaxial tensile simulation was performed on the structure of transition 
state (represented by B in Fig. 8 b). The stress-strain curve of the transition state under uniaxial stress is shown in Fig. 9 a. 
Note that the transition state is metastable, so a quasi-Newton algorithm is used for optimization, which only searches the 
structures of energy minima in the vicinity of this transition state. Here, only the initial portion of the curve is used to 
get the second order tangent stiffness at zero stress, while the whole curve may be useful to get the higher order stiffness 
if one extends the formulation of FD-BT by including higher order corrections beyond the second order. The parameters 
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Fig. 9. (a) Stress–strain curves for transition state of MoTe 2 stretched on armchair direction, where the strain is measured with respect to zero stress 2H 
phase. The solid curve is calculated from the derivative of potential energy. (b) Comparison of the barriers of the computation cell as a function of applied 
stress. 

Table 1 
The parameters of original 2H and transition state (TS) used in Eq. (20) for predict- 
ing barriers under uniaxial stress. The units for energy, area and material compli- 
ance are respectively eV, Å 2 and cm/N. 

Zero stress barrier 2H area TS strain TS compliance 2H compliance 
" # = (0) A 0 E ( t ) 11 (0) c ( t ) 11 (0) c ( o ) 11 (0) 
1.52 21.86 8.74% 1.42 1.11 

used in Eq. (20) are listed in Table 1 . The theoretical predictions and simulation results are compared in Fig. 9 b. While the 
theory overestimates the barrier, the estimation considerably improves by including the second order correction, where the 
compliance of the transition state is larger than that of the original state, so decreasing the barriers with respect to the first 
order approximation. The quality of prediction is related to the materials nonlinearity at original and transition states, and 
can be potentially improved by adding higher order corrections to Eq. (11) . 
4.2. Phase transition of silicon 

At ambient conditions, the most stable phase of Si is a diamond structure. Under compressive stress, Si transforms from 
the diamond structure (Si-I) to a metallic β- tin structure (Si-II) and continually exhibits many other different phases with 
further increase of compression. Releasing loads does not lead to a recovery of the initial Si-I phase but instead to a series 
of metastable phases ( Wippermann et al., 2016 ). These make phase transition of Si a rather complicated process, which still 
requires thorough investigations despite of the rich studies in the past decades. In this paper, we focus on the transition 
from Si-I to Si-II on a pristine Si structure. 

First, we consider the phase transition under an uniaxial compression. Molecular statics simulations are conducted by 
using damped dynamics as a force-based optimizer, where the uniaxial compression is applied through a stress control. 
The stress-strain curves are shown in Fig. 10 . At the peak stress (16.0 GPa), Si-I directly transforms to Si-II through a strain 
burst due to lattice instability. Different from the transition of MoTe 2 that is accompanied with the breaking of covalent 
bonds, the transition of Si only involves lattice deformation and atoms rearrangement. The peak stress of Si-I (16.0 GPa) in 
Fig. 10 can be considered as the upper bound of transition stress, because it triggers phase transition without the need of 
thermal activation. In reality, thermal energy can lower the transition stress, facilitating the material’s ability to overcome 
energy barrier. 

Similar to the previous example, FD-NEB simulations are applied at selected stress levels to get transition barriers, which 
are then compared with the predictions from FD-BT. The representative MEPs at three different stresses are shown in 
Fig. 11 a. The variation of the barriers as a function of the applied stress is shown in Fig. 11 b. The FD-BT predictions with 
second order correction compare closely to simulation results. It is noted that, the compliance of the transition state at zero 
stress is a negative value, making the second order contribution in Eq. (11) positive and thereby increasing the value of 
barriers with respect to the first order approximation. The parameters used in Eq. (11) for barrier predictions are listed in 
Table 2 , where " # = (0), V 0 , E ( t ) 33 (0) and c ( t ) 33 (0) are used for uniaxial compression. 
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Fig. 10. Stress–strain curves (obtained from molecular statics simulations with stress control) of Si-I and Si-II under uniaxial compression, where the strain 
is measured with respect to zero stress Si-I. Phase transition occurs at the peak stress of Si-I due to lattice instability. The lattice structures shown in the 
figure are used for DFT calculations, where the lattice constants for stress free Si-I and Si-II structures are respectively 5.47 Å × 5.47 Å × 5.47 Å and 
6.92 Å × 6.92 Å × 2.55 Å. 

Fig. 11. (a) Si phase transition MEPs of at different stresses. The inserted crystal structure is for transition state at zero stress. (b) Barrier (of the computa- 
tion cell) comparison between theoretical predictions and atomistic simulations. 

Table 2 
The parameters of original and transition state of Si used in Eq. (11) for predicting bar- 
riers under uniaxial compression and combined loading. The units for energy, volume 
and material compliance are respectively eV, Å 3 and TPa −1 . 

" # = (0) V 0 E ( t ) 33 (0) E ( t ) 
11(22) (0) c ( t ) 33 (0) c ( t ) 

11(22) (0) c ( o ) 
11(22 , 33) (0) 

3.35 163.40 −29 . 66% 17.15% -2.10 7.68 8.01 
Next, we intend to use the theory to predict the barriers under combined loadings, where uniaxial compression is applied 

on one direction and equibiaxial tensions are applied on the other two directions. Using the parameters in Table 2 , the 
barriers are calculated as a function of two stress components and plotted as contour lines in Fig. 12 . On each contour line, 
we randomly select a point and compute the corresponding barrier with FD-NEB simulation. Similar to the case of uniaxial 
loading, the predictions are reasonably accurate at the small stresses but the difference gradually increases when the stress 
increases. 
5. Discussion 

It is noted that the transition process shown in both Si and MoTe 2 examples is concerted transition , where all the atoms 
transform to the new phase simultaneously. This is due to the confinement from the small periodic cells used in FD-NEB 
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Fig. 12. The barrier (of the computation cell) contours of the transition from Si-I to Si-II under combined uniaxial compression and equibiaxial tension, 
predicted from FD-BT. Random points on the contour lines (marked by triangles) are selected for comparison with FD-NEB, and the values from simulations 
are shown inside parentheses. 
simulations. By contrast, the other type of transition is nucleated transition , which starts from a localized site, followed by the 
propagation of the new phase. Both concerted and nucleated mechanisms could occur in reality depending on the materials 
and external excitations. It is indeed challenging to study nucleation-based phase transition with NEB method or other 
types of atomistic methods, because the nucleation volume may be greater than the size of computation cell. Moreover, the 
defects inside materials also play import roles in nucleation process. To avoid this complexity and computational constrains, 
we have chosen concerted nucleation examples to demonstrate the proposed theory. 

As shown in the examples, the accuracy of the predicted barriers is material dependent. The Taylor expansion, conducted 
between undeformed and deformed states, is related to the elastic nonlinearity of the material. Silicon shows better pre- 
dictions because of the weaker nonlinearity as compared to MoTe 2 . It requires more studies in the future to quantitatively 
correlate the nonlinearity or some other potential factors to the accuracy of predictions. 
6. Summary 

Stress plays important role in solid–solid phase transitions and can be utilized as a useful tool in phase engineering 
applications. The mechanism of stress modulated phase transition is that the applied stress field can change the transi- 
tion barrier which determines the likelihood of phase transition. The stress dependent barriers can be computed by using 
transition state search methods such as finite deformation nudged elastic band (FD-NEB) method. However, these methods 
are computationally expensive, so it is time consuming to find barriers under many different stresses. This paper presents 
a facile approach to quickly estimate the barriers in the entire stress space to certain accuracy. A finite deformation Bell 
theory (FD-BT) is developed to predict the stress dependent barriers using the information of zero-stress phase transition. 
The method is applied to study two model materials: 2D MoTe 2 and bulk silicon, and it is validated by comparing theo- 
retical predictions to FD-NEB simulations. The two model materials demonstrate distinct transition mechanisms: 2D MoTe 2 
experiences covalent bond breaking during transition while the transition of silicon is dominated by lattice instability. The 
barriers of both materials exhibit significant stress dependence, which can be reasonably predicted by FD-BT. 
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